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In this paper, we consider continuous-time quantum walks �CTQWs� on a one-dimensional ring lattice of N
nodes in which every node is connected to its 2m nearest neighbors �m on either side�. In the framework of the
Bloch function ansatz, we calculate the space-time transition probabilities between two nodes of the lattice. We
find that the transport of CTQWs between two different nodes is faster than that of the classical continuous-
time random walks �CTRWs�. The transport speed, which is defined by the ratio of the shortest path length and
propagating time, increases with the connectivity parameter m for both CTQWs and CTRWs. For fixed
parameter m, the transport of CTRWs gets slower with the increase of the shortest distance while the transport
�speed� of CTQWs turns out to be a constant value. In the long-time limit, depending on the network size N
and connectivity parameter m, the limiting probability distributions of CTQWs show various patterns. When
the network size N is an even number, the probability of being at the original node differs from that of being
at the opposite node, which also depends on the precise value of parameter m.
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I. INTRODUCTION

Quantum walks have important applications in various
fields of solid-state physics, polymer chemistry, biology, as-
tronomy, mathematics, and computer science �1–6�. A quan-
tum random walk �QRW� is a natural extension to the quan-
tum world of the ubiquitous classical random walk. It was
first introduced in �7� and extensively investigated recently
in connection with possible applications to quantum algo-
rithms �8�. The behavior of quantum walks differs from that
of classical random walks in several striking ways, due to the
fact that quantum walks exhibit interference patterns whereas
the classical random walks do not. For instance, the mixing
times, hitting times, and exit probabilities of quantum walks
can differ significantly from those of analogously defined
random walks �9–11�. In recent years, two types of quantum
walks exist in the literature: discrete-time quantum coined
walks and continuous-time quantum walks �12,13�. Although
both types of quantum walks have efficient quantum algo-
rithms with respect to their classical counterparts, quantum
walks show some advantages in dealing with decoherence
processes compared to the discrete-time quantum algorithms,
which are very sensitive to environmental quantum noise
�14�.

Here, we focus on continuous-time quantum walks
�CTQWs�. Most previous studies consider CTQWs on
simple structures, such as the line �15,16�, cycle �17,18�,
hypercube �19�, Cayley tree �20�, dendrimer �21�, and other
regular networks with simple topology. Although CTQWs
have received much attention and there has been some work
about CTQWs on general graphs, many questions about
CTQWs appear to be quite difficult to answer at the present
time. For simple structures these quantum walks are analyti-
cally solvable and directly related to well-known problems in

solid state physics. Recently, Mülken et al. have studied the
space-time structures of CTQWs on one- and two-
dimensional lattices with periodic boundary conditions
�22,23�. The topology of the lattices they considered is over-
simplified, i.e., each node is only connected to its two nearest
neighbors. For regular graphs with symmetrical structure, the
dynamics of the quantum transport is determined by the to-
pology of the network. To this end, it is natural to consider
quantum transport on general lattices with more connectivity.

In this paper, we study CTQWs on a one-dimensional ring
lattice of N nodes in which every node is connected to its 2m
nearest neighbors �m on either side�. This generalized regular
network has broad applications in various coupled dynamical
systems, including biological oscillators �24�, Josephson
junction arrays �25�, neural networks �26�, synchronization
�27�, small-world networks �28�, and many other self-
organizing systems. We analyze quantum walks on such gen-
eral networks with periodic boundary conditions using the
Bloch function approach �29�, which is commonly used in
solid-state physics. We derive analytical expressions for the
transition probabilities between two nodes of the networks,
and compare them with the results of continuous-time ran-
dom walks �CTRWs�.

The paper is structured as follows: In Sec. II we review
the properties of CTQWs presented in Ref. �30� and give the
exact solutions to the transition probabilities on the general
ring network. Section III presents the time evolution of the
probabilities. In Sec. IV, we consider the distributions of
long-time limiting probabilities. Conclusions and discussions
are given in the last part, Sec. V.

II. CONTINUOUS-TIME QUANTUM WALKS

Keeping in line with previous results on quantum walks,
we study continuous-time quantum walk on networks and
compare the results with the classical counterparts.*xuxp@mail.ihep.ac.cn
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A. Continuous-time quantum walks on general networks

We consider a walk on a general graph, which is a collec-
tion of connected nodes and simple links without weight and
directions. The topology of such simple graphs can be de-
scribed by the corresponding Laplace matrix A. The nondi-
agonal elements Aij are equal to −1 if nodes i and j are
connected and 0 otherwise. The diagonal elements Aii equal
the number of total links connected to node i, i.e., Aii equals
the degree of node i. Classically, the evolution of continuous-
time random walk is governed by the master equation �3�

dpk,j

dt
= �

l

Tklpl,j�t� , �1�

where pk,j�t� is the conditional probability to find the CTRW
at time t at node k when starting at node j. The matrix T is
the transfer matrix of the walk, and is related to the Laplace
matrix by T=−�A. Here, for the sake of simplicity, we as-
sume the transmission rate � for all connections to be equal.
Then the solution of the above equation is

pk,j�t� = �k�etT�j� . �2�

Quantum mechanically, the dynamical evolution equation of
continuous-time quantum walks is obtained by replacing the
Hamiltonian of the system by the classical transfer matrix,
H=−T �9,10�. The states �j� endowed with the nodes j of the
network form a complete, orthonormalized basis set, which
span the whole accessible Hilbert space, i.e., �k�k��k�=1,
�k � j�=�kj. The time evolution of state �j� is given by the
Schrödinger equation �SE�

i
d�j�
dt

= H�j� , �3�

where the mass m	1 and �	1 is assumed in the above
equation. Starting at time t0 from the state �j�, the evolution
equation of the state �j� is �j , t�=U�t , t0��j�, where U�t , t0�
=e−iH�t−t0� is the quantum mechanical time evolution opera-
tor. The transition amplitude �k,j�t� from state �j� at time 0 to
state �k� at time t is

�k,j�t� = �k�e−itH�j� . �4�

Combining Eq. �3�, we have

i
d�k,j

dt
= �

l

Hkl�l,j�t� . �5�

We note the different normalization for CTRWs and
CTQWs. For CTRWs, �kpk,j =1 and quantum mechanically
�k��k,j�2=1 holds.

To get the exact solution of Eqs. �1� and �5�, all the ei-
genvalues and eigenvectors of the transfer operator and
Hamiltonian are required. We use En to represent the nth
eigenvalue of A and denote the orthonormalized eigenstate of
Hamiltonian by �qn�, such that �n�qn��qn�=1. The classical
transition probability between two nodes is given by

pk,j�t� = �
n

e−�tEn�k�qn��qn�j� , �6�

and the quantum mechanical transition probability between k
and j is

�k,j�t� = ��k,j�t��2 = �
n,l

e−i�t�En−El��k�qn��qn�j��j�ql��ql�k� .

�7�

For finite networks, �k,j�t� do not decay ad infinitum but at
some time fluctuate about a constant value. This value is
determined by the long-time average of �k,j�t�

�k,j = limT→�

1

T



0

T

�k,j�t�dt

= �
n,l

�k�qn��qn�j��j�ql��ql�k� lim
T→�

1

T



0

T

e−i�t�En−El�dt

= �
n,l

�En,El
�k�qn��qn�j��j�ql��ql�k� . �8�

B. Continuous-time quantum walks on a one-dimensional ring
lattice and Bloch ansatz solutions

In the subsequent calculation, we restrict our attention to
CTQWs on general one-dimensional �1D� ring lattices with
periodic boundary conditions. The network is organized in a
very regular manner, i.e., each node of the lattice is con-
nected to its 2m nearest neighbors �m on either side�; thus the
Laplace matrix A takes the form

Aij = �2m if i = j ,

− 1 if i = j 	 z, z � �1,m� ,

0 otherwise.
� �9�

The Hamiltonian of the system is given by H=�A. For sim-
plicity of analytical treatment, we set �=1 in further calcu-
lations. The Hamiltonian acting on the state �j� can be written
as

H�j� = �2m + 1��j� − �
z=−m

m

�j + z�, z � integers. �10�

The above equation is the discrete version of the Hamil-
tonian for a free particle moving on the lattice. Using the
Bloch function approach �29� for the periodic system in
solid-state physics, the time-independent SE reads

H�
n� = En�
n� . �11�

The Bloch states �
n� can be expanded as a linear combina-
tion of the states �j� localized at node j,

�
n� =
1

N
�
j=1

N

e−i�nj�j� . �12�

Substituting Eqs. �10� and �12� into Eq. �11�, we obtain the
eigenvalues �or energy� of the system,
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En = 2m − 2�
j=1

m

cos�j�n� . �13�

The periodic boundary condition for the network requires
that the projection of the Bloch states �N+1� equals that on
the state �1�; thus �n=2n� /N with n integer and n� �0,N�.
Replacing �qn� by the Bloch states �
n� in Eqs. �6� and �7�,
we can get the classical and quantum transition probabilities

pk,j�t� =
1

N
�

n

e−tEne−i�k−j�2n�/N, �14�

�k,j�t� = ��k,j�t��2 =
1

N2�n,l
e−it�En−El�e−i�k−j��n−l�2�/N.

�15�

For infinite networks, i.e., N→�, Eqs. �14� and �15� translate
to

FIG. 1. �Color online� Evolution of the probability of being at
the initial node 1. �a� Classical return probability p1,1 on networks
of N=100 with different values of m. p1,1 approaches the equipar-
titioned probability 1 /N quickly on networks with high connectiv-
ity. �b�–�d� show the evolution of quantum mechanical return prob-
abilities �1,1 with m=1–3, respectively. The dashed curves are
results on a network of size N=100 according to Eq. �20�; the solid
curves are the corresponding results on infinite networks according
to Eq. �17�. The dashed lines show the scaling behavior �1,1� t−1.

1 x 10 3

1 x 10 5

1 x 10 4

FIG. 2. �Color online� Evolution of the probability of finding the
walker at the opposite node 51 when the initial node is 1. �a� Clas-
sical transition probability p51,1 for infinite networks and finite net-
work of N=100 with different parameters m. We can see that the
probability on an infinite network with large connectivity reaches its
maximum more quickly than that on an infinite network with small
connectivity. �b�–�d� are the quantum mechanical transition prob-
abilities �51,1 for m=1–3. The solid curves are the results on infinite
networks; the dashed curves are the results on finite networks of
N=100.
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lim
N→�

pk,j�t� =
e−2mt

2�



−�

�

e−i��k−j�exp�2t�
j=1

m

cos j��d� ,

�16�

lim
N→�

�k,j�t� = � 1

2�



−�

�

e−i��k−j�exp�2it�
j=1

m

cos j��d��2

.

�17�

In particular, when m=1, the network corresponds to a cycle
graph where each node has exactly two nearest neighbors.
The limiting transition probabilities can be rewritten as
limN→� pk,j�t�=e−2tJk−j�2t� and limN→� �k,j�t�= �Jk−j�2t��2,
where Jn�x� is the Bessel function of the first kind �31�. This
is consistent with the result in Ref. �23�. The difference be-
tween finite and infinite networks is that for infinite networks
the interference of quantum transport is weak compared to
that in finite networks. For larger values of m, the above
analytical expression cannot be further simplified. We can
calculate the transition probabilities directly using integra-
tion for infinite networks. We will show that there is some
difference of the transition probabilities between finite and
infinite networks at long time scales.

Finally, the long-time-averaged probability between two
nodes yields

�k,j =
1

N2�
n,l

�En,El
e−i�k−j��n−l�2�/N. �18�

Interestingly, the long-time-averaged probability is related to
the spectrum of the network. This is in contrast to the clas-
sical transport, where there is a uniform probability �1 /N� to
find the walker at every node. The time-limiting probabilities
depend on the degeneracies of the eigenvalues, which result
in odd, unexpected patterns of the limiting probability distri-
butions.

III. TIME EVOLUTION OF THE PROBABILITIES

In this section, we analyze the time-dependent probabili-
ties of the theoretical calculations. The numerical determina-
tion of the eigenvalues, eigenvectors and integration is done

using the software MATHEMATICA. Specifically, we perform
our calculations on infinite and finite �N=100� networks with
different connectivities m.

A. Return probabilities

The probability to be still or again at the initial node is a
good measure to quantify the efficiency of the transport �32�.
Classically, according to Eq. �14�, the probability of being at
the original node j is

pj,j�t� =
1

N
�

n

e−tEn, �19�

which depends only on the eigenvalues. The quantum me-
chanical probability of finding the walker at the initial node
is given by Eq. �15�,

� j,j�t� =
1

N2�
n,l

e−it�En−El�, �20�

which also depends on the eigenvalues of the system. The
return probability is independent of the position of the initial
excitation nodes because of the symmetry of the network
topology. Analogously, employing the relation k= j, we can
calculate the return probabilities on infinite networks accord-
ing to Eqs. �16� and �17�.

Figure 1 shows the return probabilities for CTRWs and
CTQWs. Consider a CTRW on a network of size N=100 and
assume that the initial excitation starts at node 1. Figure 1�a�
depicts the temporal behavior of the return probability with
different values of m. There is a power-law decay �p
� t−0.5� at the beginning of the transport, but after some time
p reaches a constant value. This time is determined by the
time when p1,1 reaches the equipartitioned probability 1 /N.
The time becomes smaller when the parameter m increases;
this indicates that it takes less time for the return probability
to reach the equipartitioned probability on networks with
high connectivity. Figures 1�b�–1�d� show the quantum me-
chanical return probabilities for m=1, 2, and 3, respectively.
The dashed curves show the results on network of N=100
and the black solid curves show the results on infinite net-
works according to Eq. �17�. The dashed lines indicate the

FIG. 3. Development of transition probabilities �k,1�t� for CTQWs on a network of N=100 with parameter m=1 �a�, 2 �b�, and 3 �c�. The
initial exciton starts at node 1.
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scaling behavior �1,1� t−1. We note that the return probabili-
ties of finite and infinite networks agree with each other on
small time scales. At later times waves propagating on finite
networks start to interfere; this leads to different probabilities
and the deviation happens at earlier times on highly con-
nected networks �with larger values of m�. Furthermore, the
return probabilities oscillate frequently on highly connected
networks and there are more peaks compared to networks
with small values of m. Such behavior may be attributed to
the fact that the interferences on networks with high connec-
tivity are stronger than on those with small connectivity.

B. Transition probabilities and transport velocity

The transition probabilities between two different nodes
provide us more information about the transport process over
the whole network. For a finite network of N=100, we con-
sider the probability of finding the walker at the opposite

node. Figure 2 shows the transition probabilities for CTRWs
and CTQWs. Figure 2�a� shows the classical transition prob-
abilities p51,1 on infinite and finite networks of size N=100
with different values of m. As we can see, the transition
probabilities on finite networks with more connectivity ap-
proach the equipartitioned probability 1 /N more quickly than
those on networks with less connectivity. For infinite net-
works, the transition probabilities increase with time in the
first period, and then reach a maximum and decrease on the
large time scale. Quantum mechanically, the transition prob-
abilities for m=1–3 are shown in Figs. 2�b�–2�d�. The dashed
curves are the results for networks of N=100; the solid
curves are the corresponding results for infinite networks.
The transition probabilities on infinite networks are smaller
than those on finite networks at the same time. Interestingly,
for the same connectivity parameter m, the characteristic
time tc when the first maximum of the probabilities occurs on
finite networks equals that on infinite networks, i.e., the char-
acteristic time tc is independent of the size of the network.

The probabilities to go from a starting node to all other
nodes at time t on a network of size N=100 with different
values of m are plotted in Fig. 3. The starting excitation is
located at node 1, and we can see that the time taken to
propagate to the opposite node 51 becomes small on net-

FIG. 4. Time evolution of transition probabilities on infinite
networks for CTRWs �a� and CTQWs �b�. The initial excitation is
located at node 1. The solid curves show the probabilities of being
at node 11 for m=1 �p11,1 in �a� and �11,1 in �b��. Dashed curves
show the probabilities of being at node 21 for m=2 �p21,1 in �a� and
�21,1 in �b��. Dotted curves show the probability of being at node 31
for m=3 �p31,1 in �a� and �31,1 in �b��. The shortest path lengths
between the two nodes are equal, but the time when the first maxi-
mal value appears are different.

FIG. 5. Characteristic time tc as a function of the shortest path
length L with different values of m for CTRWs �a� and CTQWs �b�.
From the figure, we can see that the classical transport gets slower
while the quantum transport velocity turns out to be invariable for a
certain value of m.
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works with large values of m. In addition, the structure is
quite regular when m=1. As m increases, the pattern be-
comes irregular.

In order to compare the transport speed on different net-
works, we define the characteristic time tc as the time when
the first maximum of the probabilities occurs on infinite net-
works. This definition holds for both classical and quantum
transport. For classical transport, there is only one maximal
value and the characteristic time corresponds to the time

when the equipartitioned probability 1 /N is reached on finite
networks. Now it is natural to ask the question: Does the
transport take equal time between two nodes of the same
shortest path length? To address this question, we calculate
the transition probabilities between two nodes having the
same value of the shortest path length on infinite networks.
Figure 4�a� shows the classical transition probabilities p11,1,
p21,1, and p31,1 for m=1, m=2, and m=3. The shortest path
lengths of the two nodes for the three infinite networks equal
to 10, but the characteristic time tc is small for highly con-
nected networks. This indicates that the transport is quick on
networks with high connectivity for CTRWs. For CTQWs,
the same conclusion is also true, as confirmed by the corre-
sponding plot in Fig. 4�b�. The characteristic time tc for the
quantum transport is much smaller than that of the classical
one; this supports the fact that the quantum walks have effi-
cient quantum algorithms with respect to their classical
counterparts �33�.

Figure 5 shows the characteristic time tc versus the short-
est path length on networks with different values of m. For
classical transport �Fig. 5�a��, tc grows faster than the short-
est path length L. It is found that the relationship between the
characteristic time tc and the shortest path length L can be
well described by the quadratic equation tc=�L2, where the
parameter � can be obtained by fitting the data. Defining the
transport speed v as the ratio of L and tc, we find that the
classical transport speed becomes slow for large L, while the
quantum transport speed turns out to be a constant value. We
note that the transport speed v is large on highly connected
networks even when the two nodes are located at the same
distance Li,j. By fitting the relation between tc and L, we can
estimate the quantum transport velocities for m=1, 2, and 3,
respectively. The different behavior of the transport veloci-
ties between CTRQs and CTQWs is a striking characteristic
that distinguishes the classical and quantum transport pro-
cesses.

IV. LONG-TIME LIMITING PROBABILITIES

Now we consider the long-time-averaged probabilities.
Classically, the long-time probabilities equal the equiparti-
tioned probability 1 /N �23�. Quantum mechanically, the lim-
iting probabilities are determined by Eq. �18� but the situa-
tion is more complex for different network parameters. For
m=1, the spectrum �or energy� of the system is En=2
−2 cos��n�, where �n=2n� /N, n� �0,N�. If the network size
N is an even number, there are two nondegenerate eigenval-
ues EN/2=4 and E0=0, and the other eigenvalues have de-
generacy 2. The limiting probabilities can be written as

�ij = �2�N − 1�/N2 if i = j, i = j 	 N/2,

�N − 2�/N2 otherwise.
� �21�

If the network size N is an odd number, there is one nonde-
generate eigenvalue EN=0, and the other eigenvalues have
degeneracy 2. The limiting probabilities can be summarized
as

FIG. 6. Long-time-averaged probability distribution �k,1 for
CTQWs on networks of size N=100 with different values of m.
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�ij = ��2N − 1�/N2 if i = j ,

�N − 1�/N2 otherwise,
� �22�

which confirms the results in Ref. �30�.
For other values of m, the limiting probability distribu-

tions can also be determined according to the degeneracy
distribution of the eigenvalues, but this process is compli-
cated for large values of m. Here, we report the limiting
probabilities numerically obtained using Eq. �18�. In Fig. 6,
we display the limiting probabilities on a network of size
N=100 with the starting node 1. As we can see, the prob-
abilities for m=6 and 8 are the same as for m=1 and 3. After
a careful examination, we find that m=8 and 3 have the same
degeneracy distribution of eigenvalues, and m=6 and 1 have
the same degenerate eigenvalue distribution. In particular, for
all the values of m, there is a large probability to be still or
again at the initial node and at the opposite node k=51. For
some values of m, the probabilities at the two positions are
extremely high, for instance, when m=12, the return prob-
abilities exceed 0.07. For an odd network size, there is a
higher probability to find the walker at the initial node than

that at other nodes. For networks of size N=101 and m
50, the limiting probability distribution shows the same
pattern described in Eq. �22�. One may conjecture that the
pattern of �k,1 does not change when increasing the param-
eter m on odd-numbered networks, but this is not true for
some values of network size N. For instance, on networks of
size N=75 with some particular values of m, the limiting
probability distribution differs from the pattern of Eq. �22�
�see Fig. 7�. It is interesting to note that the patterns of �k,1
are the same for some values of m; this feature can be ex-
plained by the identical degeneracy distribution of the eigen-
values for different values of m.

As we have shown, if the network size N is an even num-
ber, there are high probabilities to find the walker at the
initial node and the opposite node. For some values of m, we
find that the probability of being at the initial node equals the
probability of being at the opposite node. However, for some
other values of m, this is not true. In Ref. �30�, the authors
find asymmetry of the probabilities for the starting node and
its mirror node; their definition of the mirror node is based
on the geometric symmetry of the network. In this paper, we
define the mirror node i� of a given node i to be its opposite
node, i.e., i�= i+N /2. We find asymmetry of the probabilities
of being at the initial node and at the opposite node �mirror
node� for some particular network parameters N and m. This
asymmetry is small and not easily observed in Fig. 6. For a
network of size N=100 and assuming the initial exciton
starts at node 1, we find that asymmetries occur at m

FIG. 7. Quantum mechanical limiting probabilities �k,1 on net-
works of size N=75 with different values of m.

FIG. 8. �Color online� �a� Relationship between the quantity
��1,50�	��1,1−�51,1� / ��1,1+�51,1� and m on a network of size N
=100. A nonzero value of ��1,50� represents asymmetry of prob-
abilities �1,1 and �51,1. �b� ��1,N /2�	��1,1−�N/2+1,1� / ��1,1

+�N/2+1,1� versus network size N for different values of m. The solid
line indicates the power-law decay ��1,N /2��N−1.
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=3,4 ,5 ,7 ,8 ,11,12,14,15,16,19,20, . . .. The asymmetric
limiting probabilities are particularly characterized by the
difference between �1,1 and �51,1; thus we use the quantity
��1,50�	��1,1−�51,1� / ��1,1+�51,1� to detect the asymmetry
of the probabilities. In Fig. 8�a�, we present ��1,50� as a
function of parameter m. There are 29 distinct values of m
having asymmetric probabilities, which is indicated by the
nonzero value of ��1,50�.

To reveal the general dependence of the asymmetry on the
network parameters, we plot the quantity ��1,N /2�	��1,1
−�N/2+1,1� / ��1,1+�N/2+1,1� as a function of the network size N
for different values of m, which are shown in Fig. 8�b�. For
m=1, the probabilities are symmetrical for all the network
sizes N; thus we show only the asymmetry for m=2, 3, and
4. We find that the points break into several clusters, where
some clusters ��1,N /2� decrease with increasing network
size N as a power law: ��1,N /2��N−1.

Except for the asymmetrical probabilities between the ini-
tial node and the opposite node �mirror node�, we also find
asymmetrical probabilities between other nodes and their
mirror nodes. In our calculations, we find that such asymme-
tries can be different from the asymmetry of the probability
of being at the initial node and being at its opposite node. For
instance, considering a CTQW on a network of size N
=100 and assuming that the initial excitation starts at node 1,
there are asymmetries between �1+n,1 and �51+n,1 �n is an
even number� for some values of m. The discrete values of m
for different asymmetries can differ from each other, depend-
ing on the precise value of N and m. This situation is even
more complex and requires further study.

V. CONCLUSIONS AND DISCUSSION

In summary, we have studied continuous-time quantum
walks on a one-dimensional ring lattice of N nodes in which
each node is connected to its 2m nearest neighbors �m on
either side�. Using the Bloch function approach, we calculate

transition probabilities between two nodes of the lattice, and
compare the results with those for the classical counterpart. It
is found that the transport of a CTQW is faster than that of
the classical continuous-time random walk. We define the
transport velocity as the ratio of the shortest path length and
spreading time between two nodes. For networks with a
given parameter m, the transport of CTRWs gets slow with
the increase of the shortest distance, while the transport of
CTQWs spreads the network constantly. In the long-time
limit, depending on the network parameters N and m, the
limiting probability distributions of CTQWs show various
patterns. When the network size N is an even number, the
probability of being at the original node differs from that of
being at the opposite node, which also depends on the pre-
cise value of the parameter m. Asymmetrical probabilities
between other nodes and their mirror nodes also exist for
some particular network parameters.

The asymmetry of the limiting probabilities of being at a
node and being at its mirror node is an interesting phenom-
enon that does not exist in the cycle graph with m=1. How-
ever, we are unable to predict which particular parameters of
N and m are related to such asymmetry. Furthermore, in our
calculations, we find a large value of the limiting return
probability for some special network topology, for instance,
on a complete graph in which each pair of nodes is con-
nected, the long-time-averaged return probabilities equal
� j,j = �N2−2N+2� /N2 while the other transition probabilities
are �k,j =2 /N2 �k� j�. This is a striking feature of CTQWs
which differs from the properties of the classical counterpart.
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